Effective heights and tangential momentum accommodation coefficients of gaseous slip flows in deep reactive ion etching rectangular microchannels

نویسندگان

  • Jaesung Jang
  • Steven Wereley
  • Steven T Wereley
چکیده

The behavior of a rarefied, compressible flow in long, constant cross section channels provides an opportunity to study complex gas dynamics in a simple geometry that allows analytical solutions. The problem of a rarefied, compressible flow in near unity aspect ratio rectangular cross section channels has been all but ignored despite it being a common flow geometry. We present analytical expressions for the mass flow rate in long, straight and uniform rectangular cross section microchannels in the slip flow regime. Using these analytical expressions, we extract the tangential momentum accommodation coefficient (TMAC) as well as the effective channel dimensions to account for a slight curvature of one of the walls of the rectangle. These expressions are effective in near unity aspect ratio rectangular microchannels made by deep reactive ion etching. The dependence of the flow behavior on the channel height to width aspect ratio is discussed as is the effect of the slight deviation from a rectangular cross section. The obtained TMAC results are consistent with values found by previous researchers using similar materials. Finally, a method of determining TMACs in channels consisting of non-homogenous materials or processing methods is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will ...

متن کامل

Slip-flow Pressure Drop in Microchannels of General Cross-section

In the present study, a compact analytical model is developed to determine the pressure drop of fully-developed, incompressible, and constant properties slip-flow through arbitrary cross-section microchannels. An averaged firstorder Maxwell slip boundary condition is considered. Introducing a relative velocity, the difference between the bulk flow and the boundary velocities, the axial momentum...

متن کامل

Low Reynolds number flows across ordered arrays of micro-cylinders embedded in a rectangular micro/minichannel

Pressure drop of ordered arrays of cylinders embedded inside microchannels is experimentally and analytically studied. Two independent modeling techniques are used to predict the flow resistance for the creeping flow regime. The pressure drop is expressed as a function of the involved geometrical parameters such as micro-cylinder diameter, spacing between adjacent cylinders, channel height, and...

متن کامل

Supplementary Information: Fast size-determination of intact bacterial plasmids using nanofluidic channels

Materials and Methods Nanofluidic chips Nanofluidic chips were fabricated from a silicon wafer with 2 μm thermal oxide in cleanroom facilities at Chalmers University of Technology. Nanochannels were created by electron-beam lithography (JBX-9300FS/JEOL Ltd) and reactive ion etching (Plasmalab 100 ICP180/Oxford Plasma Technology). Microchannels were made by optical lithography (MA 6/Suss MicroTe...

متن کامل

Effective slip and friction reduction in nanograted superhydrophobic microchannels

Enabled by a technology to fabricate well-defined nanogrates over a large area 2 2 cm2 , we report the effect of such a surface, in both hydrophilic and hydrophobic conditions, on liquid slip and the corresponding friction reduction in microchannels. The grates are designed to be dense 230 nm pitch but deep 500 nm in order to sustain a large amount of air in the troughs when the grates are hydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013